3 research outputs found

    The Workflow Trace Archive: Open-Access Data from Public and Private Computing Infrastructures -- Technical Report

    Get PDF
    Realistic, relevant, and reproducible experiments often need input traces collected from real-world environments. We focus in this work on traces of workflows---common in datacenters, clouds, and HPC infrastructures. We show that the state-of-the-art in using workflow-traces raises important issues: (1) the use of realistic traces is infrequent, and (2) the use of realistic, {\it open-access} traces even more so. Alleviating these issues, we introduce the Workflow Trace Archive (WTA), an open-access archive of workflow traces from diverse computing infrastructures and tooling to parse, validate, and analyze traces. The WTA includes >48{>}48 million workflows captured from >10{>}10 computing infrastructures, representing a broad diversity of trace domains and characteristics. To emphasize the importance of trace diversity, we characterize the WTA contents and analyze in simulation the impact of trace diversity on experiment results. Our results indicate significant differences in characteristics, properties, and workflow structures between workload sources, domains, and fields.Comment: Technical repor

    Simplified workflow simulation on clouds based on computation and communication noisiness

    Get PDF
    Many researchers rely on simulations to analyze and validate their researched methods on Cloud infrastructures. However, determining relevant simulation parameters and correctly instantiating them to match the real Cloud performance is a difficult and costly operation, as minor configuration changes can easily generate an unreliable inaccurate simulation result. Using legacy values experimentally determined by other researchers can reduce the configuration costs, but is still inaccurate as the underlying public Clouds and the number of active tenants are highly different and dynamic in time. To overcome these deficiencies, we propose a novel model that simulates the dynamic Cloud performance by introducing noise in the computation and communication tasks, determined by a small set of runtime execution data. Although the estimating method is apparently costly, a comprehensive sensitivity analysis shows that the configuration parameters determined for a certain simulation setup can be used for other simulations too, thereby reducing the tuning cost by up to 82.46 percent, while declining the simulation accuracy by only 1.98 percent on average. Extensive evaluation also shows that our novel model outperforms other state-of-the-art dynamic Cloud simulation models, leading up to 22 percent lower makespan inaccuracyThis work was supported by the ASPIDE Project funded by the European Union’s Horizon 2020 Research and Innovation Programme under Grant agreement No. 801091
    corecore